100 Bushels or Bust! Winter Wheat Management Considerations

Kurt Steinke, Ph.D. Associate Professor Soil Fertility & Nutrient Mgmt. Michigan State University

Greater yield in the field MSU SOIL FERTILITY RESEARCH

AgBioResearch MICHIGAN STATE UNIVERSITY

Seed Variety Selection

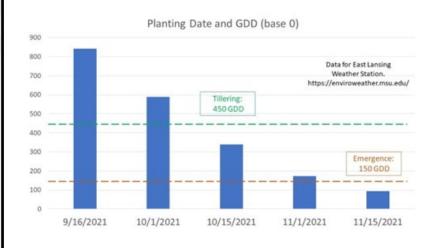
May be the most important decision
S MI varieties: 18 bu/A difference in yield
S Strengths/Weaknesses across all

- **K** Yield Potential
 - **S** 3 years data
 - **S** Locally adapted varieties

Seed Variety Selection

- Sease Resistance
 - **S** High levels of resistance
 - MI: Fusarium head blight #1
 - Integrate variety resistance and fungicide for best management
 - Moderately resistant and low DON levels
 - Con't forget about other disease management: such as powdery mildew, stripe rust, Septoria

Seed Variety Selection


- 🐔 Maturity
 - **S** Flowering
 - € May differ ~6 days between early and late var.
 - **S** Difficult to time fungicide with uneven maturity
 - Staggered maturities can increase window for fung. application (spread risk out)
- R Height
 - **S** <u>Don't underestimate this characteristic</u>
 - **S** 12-inch difference
 - S Will impact management (PGR, straw production, lodging risk)

Planting Date

High yield potential begins in autumn

- **S** 2-3 tillers before dormancy
- S GDD's essential
 - ≰ 150 emergence
 - ≰ 450 tillering

S Wheat GDD's

- K (High temp (C) +Low temp (C)) / 2 for individual days
- **S** Hessian fly date still useful reference

- Winter Wheat Yield Declines with Delayed Planting Across 3 Seasons
- **K** Losses will vary due to climate variability
 - **S** 0.6 bu/day after 10/1 **&** 0.3 bu/day after 10/15
- Mid-Oct.
 - **S** 14-20% losses
- 🖡 Late-Oct. into Nov.

	% Decline (after mid-Sept)				
Plant date	2019-20	2020-21	2021-22		
Mid-Sept.					
End-Sept.	13.5				
Mid-Oct.	14.7	19.9	20.0		
End-Oct.	27	33.3	34.0		
Mid-Nov.	21	45.8	43.6		

S 21 – 46% losses (10/25 crop insurance)
Consider grain yield and winter injury

Seed Rate and Depth 1.2 million – 2 million seeds/A

- **S** Within 1 week of Hessian fly date
 - K Lower end of range
- **S** Late-Oct and after
 - At least 1.8 million seeds/A or greater
- **S** Risk at lower rates?
- 🐔 Depth, Method
 - **S** 1 1.5 inch allows faster emergence and tillering, moisture
 - **S** Drill vs b-cast

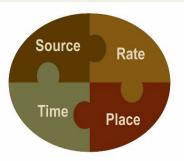
Relating Seed Size to Seed Rate

Seeds per pound	1.2	1.4	1.6	1.8	2	2.2			
Seed size		Actual pounds of seed required per acre*							
9,000	133	156	178	200	222	244			
10,000	120	140	160	180	200	220			
11,000	109	127	145	164	182	200			
12,000	100	117	133	150	167	183			
13,000	92	108	123	138	154	169			
14,000	86	100	114	129	143	157			
15,000	80	93	107	120	133	147			
16,000	75	88	100	113	125	138			

Seeding Rate (millions/ac)	Seeds per foot of row
1.2	17.2
1.4	20.1
1.6	23
1.8	25.8
2	28.7
2.2	31.6

7.5 inch row spacing

Wheat N Management


Wheat N strategies must answer 2 questions:

S 1) Can we deliver N to the plant timely?

K Early vs late vs too late

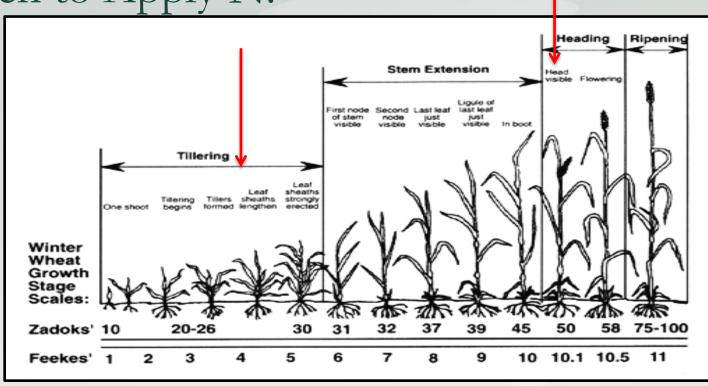
- **%**4R Nutrient Management
- Wheat is <u>NOT</u> corn!
 - **S**Growth period
 - **S**Planting dates can greatly impact

Adapted from https://www.ipni.net

N Rate and Risk Management

- Although you may want to be 100% certain of N sufficiency, being that certain is not necessarily most profitable
 - **S** Lower N rates risks decrease in profitability due to lost yield
 - **S** Greater N rates risks increase lodging, decrease profitability and yield, and environmental concerns due to unneeded N
 - Too much spring N can increase leaf growth and decrease tillering
 - **S** How much and how long are you willing to manage?

N Rates for Wheat


- Starting point:
 - **S** N Rec. = $-13 + (1.33 \times YP)$
 - S Must have realistic yield potential

- Control Contro Control Control Control Control Control Control Control Control
- **5** Tiled?
- **S** Red vs White
- K Weather highly influential
 - SDry years: 0.9 lb N/bu
 - SWet years: 1.2 lb N/bu

- How long are you planning to manage?
- When did you plant?
- Planting dates can have tremendous influence on production

When to Apply N?

60% of N taken up between Feekes 4 and 10.1

(stem elongation to head emergence)

When is N at the Greatest Potential for Loss?

1) Wet, warm conditions

2) Soil nitrate present without active crop growth

Green-Up vs. F5 vs. Split N Application

		Wheat yield (bu/A)				
Year	Green-Up	Feekes 5	50% Green-Up 50% Feekes 5	April rainfall (inches)		
2013	83 b ²	95 a	92 ab	8		
2014	97 a	97 a	94 a	1		
2015	109 a	109 a	110 a	0.8		
2016	91 a	90 a	91 a	2.9		

- K Wet = split or delayed assist; Dry = poor use of split or delayed N
- **F** Tillering may help determine GU vs. F5

Alternative N Application Technologies for Soft Red Winter Wheat

- Stream Jet Nozzles (GU)
- Streamer Bars (GU)
- Flat Fan Nozzles (GU)
- Broadcast Urea (GU)
- Spoon-Fed N
 - Weekly starting at GU and lasting for 7 weeks after GU (8 total)
- (All 100 units N)

Alternative N Application Technologies for Soft Red Winter Wheat (2018)

Treatment	Grain Yield (bu A ⁻¹)
Check	64 d
Stream Jet Nozzles	86 ab
Streamer Bars	93 ab
Flat Fan Nozzles	67 cd
Broadcast Urea	80 bc
Spoon-Fed N	96 a
P>F	0.04 (15.1 LSD)

Alternative N Application Technologies for Soft Red Winter Wheat (2019)

Treatment	Grain Yield (bu A ⁻¹)
Check	77 c
Stream Jet Nozzles	104 ab
Streamer Bars	101 ab
Flat Fan Nozzles	103 ab
Broadcast Urea	103 ab
Spoon-Fed N	111 a
P>F	< 0.01 (12.3 LSD)

Nitrogen Stabilizers or Extenders

- Inhibitors or Extenders added to "conventional" N sources such as anhydrous ammonia, urea, or UAN
 - Nitrification Inhibitors (leaching and denitrification)
 - Nitrapyrin (ex. N-Serve, Instinct)
 - Dicyandiamide (DCD) {ex. Guardian}
 - Pronitridine (ex. Centuro) UAN and AA only
 - Urease Inhibitors (volatilization)
 - NBPT (ex Agrotain)
 - Duromide and NBPT (ex. Anvol)
 - Nitrification and Urease Inh. (Protect against 3 forms N loss)
 - DCD and NBPT
 - Ex. Super U, Agrotain Plus SC
 - DCD and Pronitridine
 - Ex. Tribune

Urease Inhibitors

 Urea is an organic compound that must be hydrolyzed in the presence of a specific enzyme (urease) in order to ultimately produce ammonium-N

• The first product of the reaction is ammonia (volatile)

Nitrification Inhibitors

- Nitrification is the conversion of ammonium-N into nitrate-N
 - The reaction occurs relatively quickly, but it is a function of:
 - Ammonium concentration
 - Soil pH
 - Oxygen availability
 - Soil moisture
 - Temperature

Wheat Response to N Inhibitors 2013 - 2017

	Wheat yield (bu/A)							
Year	90N	90N with UI ² + NI	90N with UI only	April rainfall ⁴ (inches)				
2013	83 a ³	96 a	87 a	8				
2014	97 a	103 a	100 a	1				
2015	109 a	108 a	107 a	0.8				
2016	91 a	96 a	92 a	2.9				
2017	82 a	78 a	79 a	5.2				

¹ Adapted from K. Steinke. 2013-2017, Michigan Wheat Research Reports

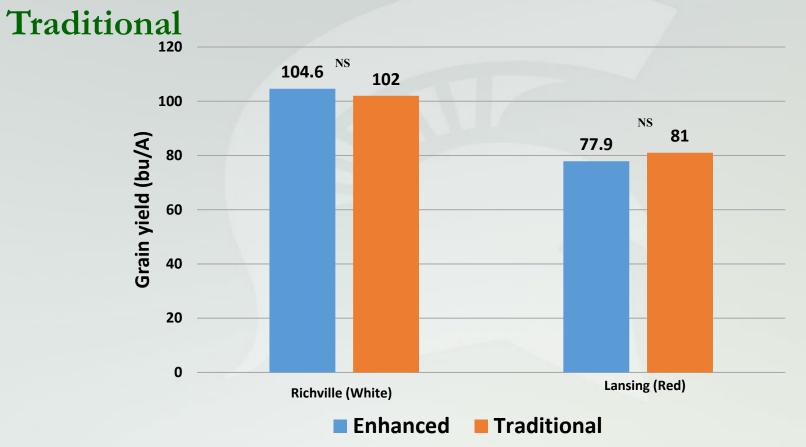
- ² UI, Urease inhibitor; NI, Nitrification inhibitor
- ³ Values in a row followed by the same lowercase letter are not significantly different at ? = 0.10

⁴Mean April total rainfall for Lansing is 2.9 inches

- Why varied performance?
 - MOISTURE (2015 photo)

Intensive Management Yes, No, or Maybe?

2016-2017 Intensive Winter Wheat Mgmt Study -Inputs Evaluated


Input	Product Name	Rate Applied
		120 lbs/A, 144 lbs/A (White)
Nitrogen	UAN	90 lbs/A, 108 lbs/A (Red)
Urease Inhibitor	Agrotain Advanced	1 qt/ton UAN
Nitrification Inhibitor	Instinct II	37 oz/A
Plant Growth Regulator	Palisade EC	12 oz/A
Foliar Micronutrients	Max-IN Ultra ZMB	2 qt/A
Fungicide	Prosaro	8.2 oz/A

Grain Yield (bu/A) Changes from Respective Enhanced or Traditional System

Lansing (Red)					
Treatment	Grain Yield (Treatment			
Enhanced (E)	77.9	81	Traditional (T)		
E w/o Urease Inhibitor	5.7	-2.8	T w/Urease Inhibitor		
E w/o Nitrification Inhibitor	2.2	3.4	T w/Nitrification Inhibitor		
E w/o Plant Growth Regulator	-0.5	1.1	T w/Plant Growth Regulator		
E w/o Fungicide	0.3	10.8*	T w/Fungicide		
E w/o Foliar Micronutrients	9.8	7.2	T w/Foliar Micronutrients		
E w/o Increased Nitrogen Rate	-8.4	4.1	T w/Increased Nitrogen Rate		

*Significantly different at α=0.1

Grain Yield (bu/A) Comparison of Enhanced vs.

2018-2019 Intensive Winter Wheat Mgmt Study – Inputs Evaluated

Input	Product Name	Rate Applied		
Seeding Rate	Starburst	1.8 million seeds A ⁻¹ 0.9 million seeds A ⁻¹		
Autumn Starter Fertilizer	12-40-0-10S-1Zn	250 lbs A ⁻¹		
Weekly N	UAN 28%	12.5 lbs N A ⁻¹		
Fungicide	Prothioconazole + Tebuconazole	8.2 oz A ⁻¹		
Plant Growth Regulator	Trinexapac-ethyl	12 oz A ⁻¹		
High N Rate	UAN 28%	133 lbs N A ⁻¹		

Treatment	Decreased Seeding Rate (D.S.)	Fungicide	Plant Growth Regulator	Autumn Starter	Weekly N	High N Rate
Enhanced (E) – D.S.	Yes	Yes	Yes	Yes	Yes	Yes
E w/o D.S.	No	Yes	Yes	Yes	Yes	Yes
E w/o Fungicide	Yes	No	Yes	Yes	Yes	Yes
E w/o PGR	N Rate	N Rate = 133 lbs N A^{-1}				
E w/o Autumn starter		-13	5 105 1			Yes
E w/o Weekly N	Yes	Yes	Yes	Yes	No	Yes
E w/o High N	Yes	Yes	Yes	Yes	Yes	No
Traditional (T) –I.S.	No	No	No	No	No	No
T w/ D.S.	Yes	No	No	No	No	No
T w/ Fungicide	No	Yes	No	No	No	No
T w/ PGR	N Date	-10	$0.1h_{\rm C}$	Λ-1		No
T w/ Autumn starter	IN Kau	N Rate = 100 lbs N A^{-1}				
T w/ Weekly N	No	No	No	No	Yes	No
T w/ High N	No	No	No	No	No	Yes
Untreated Check	No	No	No	No	No	No

>

Input Intensive Management Study

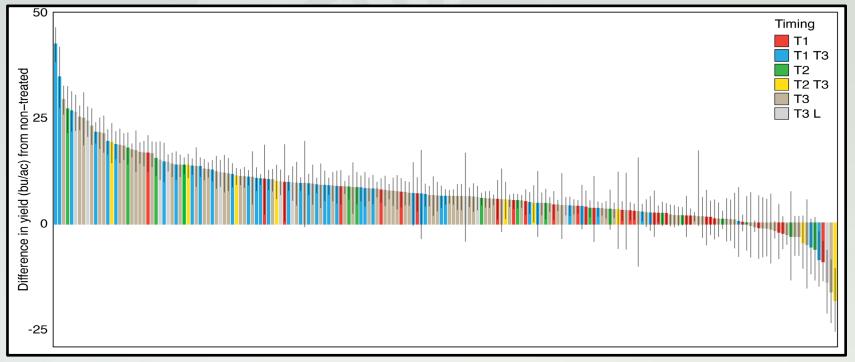
S Autumn Starter

- f = 10 25 bu A⁻¹ increase with addition
- f 15 37 bu A⁻¹ decrease with removal
- Steinke et al. 2021....Integrating multiple inputs for soft red and white winter wheat
- **S** What about the straw?
 - Identify the impact of autumn starter fertilizer and spring N on wheat grain yield, straw production, and grower profitability in <u>short and tall-statured</u> <u>varieties</u>

Looking Beyond Grain Yield: Winter Wheat

Autumn Starter Fertilizer Treatments 2020-2021

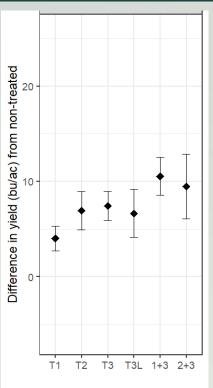
Autumn Starter: 12-40-0 10S 1Zn		28% Nitrogen		'Flipper' and 'Red Dragon'
No Starter Fertilizer	0 lb/A	Low Spring N	50 lb/A	Tupper and Red Diagon
Mid Autumn Starter	125 lb/A	Base Spring N	100 lb/A	
High Autumn Starter	250 lb/A	High Spring N	150 lb/A	


Fertilizer Ra				
Autumn Starter: 12-40-0 10S 1Zn		28% Nitrogen		'Jupiter' and 'AC Mountain
No Starter Fertilizer	0 lb/A	Low Spring N	60 lb/A	
Mid Autumn Starter	125 lb/A	Base Spring N	120 lb/A	
High Autumn Starter	250 lb/A	High Spring N	180 lb/A	K. Steinke, MSU

Summary

- Autumn practices are NOT only tied to grain yield
 - S Straw production also influenced
 - **S** Grain and straw yield reductions with treatments containing no autumn starter also had N:S ratios > 12:1
- Replant height increased with autumn starter across all varieties
 - S Direct impact on variety selection for straw production
 - **S** Short stature did not limit straw
 - **S** Increases in tiller count and plant height with autumn starter
- Repre-plant soil test levels crucial to determining plant response

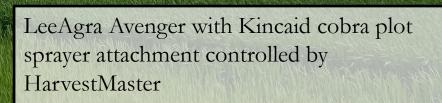
MICHIGAN STATE UNIVERSITY


Meta-analysis of 93 individual studies on difference in grain yield between fungicide treated and nontreated wheat

Breunig, Steinke, Nagelkirk and Chilvers - MSU

MICHIGAN STATE UNIVERSITY

Timing	Yield response bu/ac (\overline{D}_t)	Among-study variance $\hat{\sigma}^2$	
T1	4.01 A	8.65	
T2	6.93 B	37.16	
Т3	7.41 B	40.79	
T3_L	6.65 B	31.72	
T1_T3	10.53 C	60.76	
T2_T3	9.48 CB	64.14	


Con average, all application timings provided significant yield benefit

- **%**T1 provided the least benefit
- Combination treatments provided highest benefit on average, but also largest variance
- R Breunig et al., 2022. Meta analysis of yield response to applications of fungicide made at different crop growth stages in Michigan winter wheat. Plant Health Prog. 23:300-307
 K.

Experimental Treatment & Design

Three-level factorial structure with four replications
 (84 plots per site)

- **S** Autumn starter fertilizer
- **S** Fungicide timing applications
- S Late-applied Nitrogen
- **S** Check plot

Preliminary Results

🐔 Grain & Straw Yield

- **S** Autumn starter improved grain yield by **36.03%**.
- **S** Late-applied N increased grain yield by **4.83%**.
- **S** Straw w/ autumn starter only = straw w/ autumn starter + late-applied N.
- **S** Fungicide Timing = NS
- **K** Tiller Production
 - **S** Autumn starter increased tillers by **13.74%**.
- Fractional green canopy coverage (FGCC) and normalized difference vegetation index (NDVI)
 - **S** Autumn starter enhanced wheat's canopy coverage and greenness across growth stages.
- K Head count, head length & plant height
 - **S** Autumn starter and late-applied N increased headcount by **46.67% and 5.56%**, respectively.
 - **S** Interaction of autumn starter and late-applied N increased head length.

Preliminary Results

Fusarium head scab

S Interaction of autumn starter and late-applied N reduced FHB severity and index.

Flag leaf nutrient concentration

- **S** Interaction of autumn starter and late-applied N improved plant N.
- S Addition of late-applied N increased plant P.
- **S** Addition of autumn starter increased plant S.

Grain nutritive quality

- **S** Addition of autumn starter and fungicide reduced protein content.
- **S** Application of late N improved protein content.

Brought to you by Michigan's Wrieat Farmers through the Michigan Wrieat Program and Michigan State University Extension Be sure to check out recent wheat production bulletin

🐔 <u>soil.msu.edu</u>

S Resources

Bulletins, Articles, Papers

S Michigan Wheat 101

Michigan State University Soil Fertility and Nutrient Management

For more information ksteinke@msu.edu

soil.msu.edu

f MSU Soil Fertility

AgBioResearch MICHIGAN STATE UNIVERSITY

